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APPLICATION OF THE PONTRYAGIN MAXTMUM PRINCIPLE TO FLIGHT IN
A VACUUM

G. Steinmetz

This paper discusses methods of determining fuel-
optimum ascent trajectories in a vacuum (classical
calculus of variations, Pontryagin maximum principle,
dynamic programming, gradient method). It is found
that the Pontryagin maximum principle has distinct
advantages over the other methods. The mathematical
relationships for the application of the principle to
the title problem are derived. The difficulties en-
countered are discussed.

1. Notation

[m sec‘z] Acceleration of gravity
fm] Altitude of flight
[kp/m secz] Mass of the rocket
[kp/m sec] Maximum fuel mass flow
[m] Radius of the Earth
S,SmaX [kp] Propulsion unit thrust, propulsion unit
' maximum thrust
[s] Time
[m/sec] Flight losses
[m/sec] Exhaust velocity of the fuel
[°] Angle of inclination of the propulsion
unit axis with respect to the
trajectory
[°] Angle between the trajectory and the
horizon
[1] Steering function of the magnitude of

propulsion unit thrust

Adjoint variable

2. Statement of the Problem

The investigation was carried out within the framework of a determination

Numbers in the margin indicate pagination in the original foreign text.
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of optimum ascent trajectories for a two-stage space rocket. The problem
was to place the second stage of the rocket in a circular orbit around the
earth in such a way that the required fuel consumption is at a minimum.

In order to obtain approximate values for our project in as short a
time as possible, we chose the following approach:

1. Experimental determination of the optimum ascent trajectory within
the atmosphere (with the aid of an analog computer investigation).

2. Optimization of the trajectory in a vacuum according to principles
of variational calculus (also with the aid of an analog computer investigation).

In this investigation we made the assumption that the staging separa-
tion occurs at altitudes at which the only external force is the earth's
attraction. :

The optimization of the overall trajectory for given initial and

terminal conditions (at h = 0; at h = h , ..) can be carried
circular orbit

relatively easily using the division of the problem into two partial problems
as mentioned above. The end points of the lower trajectory segment (staging
position) as well as the initial values of the upper trajectory segment
(staging position) are both considered as variable. The determination of

the optimum overall trajectory, including the determination of the optimum
staging position, then occurs by connection of the two trajectory segments

in a way that will minimize the fuel consumption.

The following considerations will only be concerned with the second
trajectory segment, i.e., the optimization of the fuel consumption in a
vacuum.,

The following simplifying assumptions are made for this purpose:
a) The trajectories are two-dimensional.
b) The target orbit is a circular orbit.

¢) Limitations for the restriction of the available phase space are
not taken into account.

The following steering variables are used:

1. Propulsion unit thrust S; where 0 < § §=Smax is satisfied.

2. Thrust direction a; a is arbitrary.

For the steering variables we made the simplifying assumption that their
change per time unit is not bounded.




3. Discussion of the Possible Methods of Solution

The applicable mathematical optimization procedure should satisfy the
following conditions:

1. The optimization procedure must be such that by using a procedure
which is in principle the same it becomes possible to solve more extensive
problems of the same type. There is validity in this condition, because it
enables us to accumulate information on this problem.

2. The method should have relatively small demands in time and cost
(for the present stage of the investigation).

Due to the accuracy requirements for the results, it seemed appropriate /12
to carry out the investigation using an analog computer. On the other hand,
the use of the analog computer as a calculation aid satified the conditions
set forth in 3.2. .

In principle, the following methods of solution are possible:

a) Classical variational calculus
b) Pontryagin maximum principle
¢) Dynamic programming (Bellman)
d) Gradient method.

It should be noted that the most important difficulties in the
application of the methods of Group a and Group b occur due to the boundary
value problem which must be solved. On the other hand, difficulties occur
in the application of methods ¢ and d as the number of variables is increased
(dimension of the phase space, number of steering variables).

Since, according to the requirement 3.1,, it is required that, in
principle, the same method is to be used for more extensive and more
complicated problems (trajectory optimization within the atmosphere), we
decided to avoid the use of methods ¢ and d for the reasons given above. The
methods a and b have the additional advantage that in the present problem
the associated major difficulty, i.e., the solution of boundary value problems,
disappears at least in part due to the variable staging position which has
been assumed at least temporarily. Of the two optimization procedures which
remain, the Pontryagin maximum principle was used for the solution of the
problem. This procedure has the following advantages over the classical
calculus of variations:

1. It expresses the content of three necessary conditions of the 13
~ classical calculus of variations -- Fuler differential equation, Legendre
condition, Weierstrass necessary condition -- in a simple way, which is the

necessary condition for the presence of an optimum.

2. 1In the present problem, there are no additional conditions which
must be satisfied (classical calculus of variations: Weierstrass—Erdmann-
corner conditions) due to the presence of discontinuities in the time
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derivatives of the phase variables.

3. TFor more complicated problems (restriction of the allowable phase
space) the difficulties in the application of classical calculus of variations
increase in a manner which is disproportionally larger.

Since, in the present case we intended to attemptthe solution of more
complicated and more extensive problems, it seemed appropriate to prefer
the maximum principle according to condition 3.1.

4. Solution of the Optimization Problem

The quantity Xg = %- was optimized in such a way that in circular

R A . .
orbit o becomes a minimum.

The following are phase space variables: v, vy, h, m,

4.1. Formulation of the system of equations

The steering variables must be chosen in such a way that the functional
(4]

. !
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becomes a minimum.

The following side conditions must be satisfied:
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The acceleration of gravity is calculated from

_ 981 re?
g = 7};,77—)7{

The system of differential equations for the adjoint variables results in

" (see Ref. 1):
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For convenience (section 4.3.) a time transformation was carried out:

T‘t’-t; dr S—dt

4.2, Realization of

§ v cosocu,z—gmi&/ SIn(I-f-gyM"—l- ¥3

1

the optimization criterion based on the maximum /15
principle.
In order that the steering variables a, § and the phase variables
Vs Ys m, n are optimum in the sense that X is made a minimum by them,
it is necessary that the following conditions are satisfied (see Ref. 1) and
that the vector function ¥ (wo, w s w s w , w ) does not vanish:
a) For each t, ty st <ty the function
H(s" J Vlrlmlhl'alé) = %;fxo*‘ ‘”V.fvlf%.ff.‘%.fl:n.’suh'fh
of the variables o, & (0 £ 6 < 1) takes on its maximum at the point
o =a (t) , 6§ = 6(£):
H=M(y; v, p,mh)
M=supH(y;v,y .m,h, «,b)
.028<1
b) At the time ty the following conditions must be satisfied:
“%, (1) <0 M=0
c) The differential equations given in section 4.1. must be satisfied.
In the present problem we have: 116
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after introduction of the switching function

-ty - 1Ml : M mai) . .
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the following result is obtained:
‘ o v o ein e
H =B84 -y, g sing spplf - )cosg gy sing
The criterion for the switching on and switching off, respectively, of the
propulsion system follows from condition (a) of the maximum principle:

A>O0 ———(S=6,'n¢x=7

A<0 —-5=6,,,,-,,=0‘

The thrust direction (a) follows from condition (a) as well:
dH _ 94 [‘ , | M |
o 94 _|. . Yr ¢ (x] e MMmaxl ,, _ ‘

X = arctan Vi/L

v

The necessary condition for satisfying the condition (a) with respect to
a is the following:

J? 2 . .
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=y, cosa[ 14 Vgﬁy, 7] lmr;axl <0

Under the condition that |a| < %— it follows from this that:

¥ >0

Summarizing, the following conditions result for optimum flight trajectories:

1. The system of differential equations of section 4.1. is satisfied.

2. Switching function for the thrust

A>0 —= &

L] u
QO -

A<0 ——=§

3. Thrust direction = arctan Ve |
X 2

14




4, wa = -1 (the magnitude of bxq can be chosen arbitrarily, because

the system of differential equations is homogenous in wk XK=V, vy, m,n, xgk
5. M|t_’l = 0.

4.3 Discussion of special features. /18

An analog computer was used as the computation aid for the reasons
given in the introduction. The analog computer is particularly well suited
for the solution of the system of equations, especially because the steering
variables can be expressed in an explicit manner. The introduction of the
functional in the form given has the advantage over the explicit condition

m . ., = m . . .., which seems simpler at first
circular orbit maximum circular orbit

glance, in that the corresponding adjoint variable wxo is independent of the

time. Thus, every calculated trajectory satisfies the necessary optimum
condition and the course of wxo need not be controlled.

We found that the switching function of the thrust, A, had to be simulated
in a relatively exact manner. Deviations from the exact value, which are
usually caused by non-linear calculation elements, result in high frequency
on-off switching commands for the propulsion unit thrust at the time of
switching.

The reversal of the direction of integration (time transformation)
resulted from the fact that the final conditions (circular orbit) were
given in the form of a point in phase space, whereas, in contrast to this,
the initial conditions (staging position) must only lie within a region of
phase space. Due to these facts it was possible to avoid extensive recursion
formulas for the calculation of fixed end values by making use of the time
transformation. In order to assure that the trajectory ends in the region
of possible staging positions, the initial values (circular orbit) of three
adjoint variables were varied manually (two of the five initial values of /19
the adjoint variables follow from the necessary condition already:

wXO = ~1; an additional initial value follows from Mltl = Q).

A further difficulty resulted from the fact that when the circular orbit

condition was adhered to (y = 0, h = hcircular orbit’ V= Vcircular orbit)

the condition A = 0 followed at the initial point of the integration interval.
This corresponds to the trivial solution which states that the initial
circular orbit is an optimum trajectory with respect to fuel consumption.
Thus, it was necessary to deviate from the exact circular orbit condition

as the initial state: the initial velocity was taken as VO = 0.995 x

in addition, the free initial conditions of the adjoint
> 0. The field of the

Vcircular orbit’
variables were chosen in such a way that A(

t = t1)
optimum trajectories was not changed because when the trajectory intercepts
the circular orbit,at least a short time is required for the propulsion
unit to be turned on.
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5. Summary
This article showed a possible method of attack for the determination

of fuel optimum trajectories in a vacuum, which can be carried out with a
tolerable amount of effort. Such investigations are most often carried out
during the project stage of a mission, where it is necessary to make a
decision for one of the possible solutions.

The possible methods of optimization were discussed with regard to
their applicability to the special problem of determining fuel optimum ascent
trajectories. It was found that the Fontryagin maximum principle offers
advantages over other methods. Then the mathematical relationships were
derived based on the maximum principle as the optimization method. Finally,
we reported on peculiarities which occur when the investigations are carried
out.
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